Returning to parallel computing with Apache Spark has been insightful, especially observing the increasing mainstream adoption of the McColl and Valiant BSP (Bulk Synchronous Parallel) model beyond GPUs. This structured approach to parallel computation, with its emphasis on synchronized supersteps, offers a practical framework for diverse parallel architectures.While setting up Spark on clusters can involve effort and introduce overhead, ongoing optimizations are expected to enhance its efficiency over time. Improvements in data handling, memory management, and query execution aim to streamline parallel processing.A GitHub repository for Spark snippets has been created as a resource for practical examples. As Apache Spark continues to evolve in parallel with the HDFS (Hadoop Distributed File System), this repository intends to showcase solutions leveraging their combined strengths for scalable data processing.
Technical notes about past publications and work by Darrell Ulm including Apache Spark, software development work, computer programming, Parallel Computing, Algorithms, Koha, and Drupal. Source code snippets, like in Python for Spark. Retrospective of projects.