Returning to parallel computing with Apache Spark has been insightful, especially observing the increasing mainstream adoption of the McColl and Valiant BSP (Bulk Synchronous Parallel) model beyond GPUs. This structured approach to parallel computation, with its emphasis on synchronized supersteps, offers a practical framework for diverse parallel architectures.While setting up Spark on clusters can involve effort and introduce overhead, ongoing optimizations are expected to enhance its efficiency over time. Improvements in data handling, memory management, and query execution aim to streamline parallel processing.A GitHub repository for Spark snippets has been created as a resource for practical examples. As Apache Spark continues to evolve in parallel with the HDFS (Hadoop Distributed File System), this repository intends to showcase solutions leveraging their combined strengths for scalable data processing.
This is the Scala version of the approximation algorithm for the knapsack problem using Apache Spark. I ran this on a local setup, so it may require modification if you are using something like a Databricks environment. Also you will likely need to setup your Scala environment. All the code for this is at GitHub First, let's import all the libraries we need. import org.apache.spark._ import org.apache.spark.rdd.RDD import org.apache.spark.SparkConf import org.apache.spark.SparkContext._ import org.apache.spark.sql.DataFrame import org.apache.spark.sql.SparkSession import org.apache.spark.sql.functions.sum We'll define this object knapsack, although it could be more specific for what this is doing, it's good enough for this simple test. object knapsack { Again, we'll define the knapsack approximation algorithm, expecting a dataframe with the profits and weights, as well as W, a total weight. def knapsackApprox(knapsackDF: DataFrame, W: Double): Da...